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Resul ts  of the numer ica l  solution of a s y s t e m  descr ib ing nonse l f s imi la r  natural  convection 
s a l am i na r  boundary  l aye r  nea r  a ve r t i ca l  plate with exponentially dec reas ing  t e m p e r a t u r e  
dis tr ibut ion a re  d i scussed .  The nature  of the development  of the the rma l  and dynamical  
boundary l aye r s  as well  as the f r ic t ion  s t r e s s  and heat flux along the plate su r face  is given. 

ties. 
Let  us consider  f r ee - convec t i ve  motion along a ve r t i ca l  plate  in a fluid with constant  physical  p r o p e r -  
The fundamental  s y s t e m  of equations hence takes the following f o r m  [1]: 
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Fig.  1. T e m p e r a t u r e  p rof i l es  in the boundary l ayer  a and veloci ty  prof i les  in the boundary layer  b; 
solid l ines co r respond  to the number  P r  = 0.7, and the dashes to P r  = 5,0: 1) ~ = 0; 2) 1; 3) 2. 

Fig~ 2. F r ic t ion  s t r e s s  and heat  flux distr ibution on a plate su r f ace ,  Solid lines) heat flux Nux/ t  cv~-r-x . 
dashed f r ic t ion  s t r e s s  ~w: 1) P r  = 0.01; 2) 0ol; 3) 0.7; 4) 1; 5) 5; 6) 50. 
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with the boundary conditions 

00' O~ 02~ 
u - -  + v ~ = a - -  (3) 

Ox Oy Oy ~ 

u = 0 ,  v=O,  ~ = ~ s t  for y = 0 ,  (4) 

u = 0 ,  ~ = 0  for g - + c o  

Se l f s imi la r  solutions which a re  poss ib le  for  a power - law or exponential t e m p e r a t u r e  dis t r ibut ion on 
the plate sur face  [2] a r e  usual ly  cons idered  in computing the f r ee  convection along a pla te .  An at tempt  is 
made in [3] at a combined taking account of the heat conduction and f ree  convection in assigning a definite 
law of r ib outline var ia t ion .  The solution for  f r ee  convection will be s e l f s imi l a r  when the r ib is outlined 
specia l ly .  A number  of pape r s  devoted to nonse l f s imi la r  solutions in the boundary l aye r  is based  on a lmos t  
s e l f s imi l a r  methods of solution [4]. The resu l t s  elucidated there  a re  of l imited value since they a re  ap-  
pl icable  for a re la t ive ly  smal l  value of the expansion p a r a m e t e r .  

It  has been es tabl ished in an exper imenta l  invest igat ion of heat conduction in e lements  of an a r m a t u r e  which 
a r e  thin ve r t i ca l  p la tes  with Bi << i heated f r o m  below, that the t e m p e r a t u r e  distr ibution can be r ep re sen t ed  as 

{}st ~ #o exp (--rex). (5) 

To solve the boundary-va lue  p rob lem,  let  us introduce the t r ans fo rma t ion  

( lo - -  t~ ) ~/4 
=rex, q = cg/x '/4, c =  g~ 4v2 ' (6) 

t - - t= 
~(x, g)= 4vcx 3/4 f(~, ~1), 0 - - - - ,  

t o - -  t~ 

where  r y) is the s t r e a m  function sa t is fying the continuity equation (2). 

The s y s t e m  (1)-(3) in the new va r i ab les  reduces  to the following: 

Oq ~-~ On ~ ~,Oq/ + 0 = 4 ~  Oq 0q0~ Oq ~ 0~ ' 
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with the boundary conditions 
of f =0 -0~I =0' @=exp(--~) for ~i=0, 

(9) 
0f - -0 ,  @ = 0  for ~ c o .  

Se l f s imi la r  solutions exis t  for  a homogeneous t e m p e r a t u r e  prof i le  (m = 0) since the right s ides  of 
(7) and (8) vanish he re .  The re fo re ,  the difficulties of ass igning a prof i le  at the initial  point of integrat ion 
can be bypassed .  Moreover ,  the equations p resen ted  a re  un ive r sa l  for  any exponential t e m p e r a t u r e  prof i le  
on the wall  and it is sufficient to solve it once.  

An implici t  d i f ference scheme  was used to solve (7) and (8). The der iva t ives  with r e spec t  to ~7 in the 
equations were  rep laced  by cen t ra l  d i f fe rences .  A difference approximat ion  was used for  the der iva t ive  with 
r e spec t  to }. Consequently,  the initial equation was reduced to a s y s t e m  of nonlinear  a lgebra ic  equations 
which was solved by i te ra t ions .  A l inear  s y s t e m  was hence solved in each i tera t ion by using the known 
fac tor iza t ion  method. 

The typical nature  of the the rmal  and hydrodynamical  boundary layer  development  is r ep re sen t ed  in 
Fig.  l a ,  b.  Shown in Fig.  l a  is the development  of the the rmal  boundary layer  s ta r t ing  f r o m  an initial s e l f -  
s im i l a r  prof i le .  The essen t ia l  s ingular i ty  is that the t e m p e r a t u r e  max imum is displaced within the t he rma l  
boundary l ayer  s t a r t ing  with some  c ro s s  sect ion.  Such a shift is explained by an upward r i s e  in the hot ter  
l aye r s  and a diminution in the plate t empe ra tu r e  with height.  The resu l t s  of numer ica l  computat ions for  a 
d imensionless  veloci ty  prof i le  u = u/4vc2x 1/2 a re  p resen ted  in Fig.  lb .  It can be noted that the thickness  of 
the dynamical  boundary l aye r  grows as } i nc r ea se s ,  and the max imum value of the veloci ty  d e c r e a s e s  and 
is shifted to the r ight .  
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I t  is seen  f r o m  Fig.  2 that the d imens ionless  f r ic t ion  s t r e s s  on the wall  ~w = Tw/4ypc3xI/4 d e c r e a s e s .  
As has been mentioned e a r l i e r ,  the heat flux is f i r s t  d i rec ted  f rom the wall  and then s ta r t ing  with some  
f r o m  the boundary  l aye r  to the wall ,  as is explained by the change in sign of Nux/4~r-G--r x. 

For  a h i g h - t e m p e r a t u r e  a r m a t u r e  this heating by fluid l aye r s  r i s ing  upward is not des i r ab le .  The 
mentioned computat ion affords the poss ib i l i ty  of es tabl ishing the opt imum height d imension of an a r m a t u r e .  
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N O T A T I O N  

a r e  the pro jec t ions  of the veloci ty  vec tor  on the x, y axes ,  respec t ive ly ;  
is the longitudinal coordinate;  
ts the t r a n s v e r s e  coordinate;  
is the coefficient of k inemat ic  v iscosi ty ;  
~s the coefficient of dynamic viscosi ty;  
ts the acce l e ra t ion  of gravi ty ;  
is the coefficient  of volume expansion; 
Ls the local  heat exchange coefficient;  
~s the coefficient of fluid heat conduction; 
m the coefficient  of heat conduction of the plate;  
~s the t empe ra tu r e ;  
~s the excess  t empera tu re ;  
a r e  the s e l f s imi l a r  va r iab le  longitudinal and t r a n s v e r s e  coordinates ,  respec t ive ly ;  
a r e  the d imens ion less  s t r e a m  function and t empera tu re ;  
is the Prandt l  number;  
is the local  Nussel t  number ;  
is the local  Gransshopf  number;  
is the Blot c r i te r ion;  
is the d imens ion less  velocity;  
is the d imens ion less  f r ic t ion  s t r e s s ;  
is the plate th ickness .  

S u b s c r i p t s  

w is the wall; 
x is the local  value dependent on the coordinate;  
0 is the origin; 
~r is the external  flow. 

i, 
2. 
3. 
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